3 Barplot
In this chapter, we introduce the barplot in ggplot2 style.
3.1 basic barplot
We use diamonds
dataset for illustration.
library(ggplot2)
library(dplyr)
library(patchwork)
data("diamonds")
diamonds
## # A tibble: 53,940 × 10
## carat cut color clarity depth table price x y z
## <dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
## 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
## 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
## 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
## 4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
## 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
## 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
## 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
## 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
## 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
## 10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
## # … with 53,930 more rows
Count the number of diamonds in each cut group.
<- diamonds %>%
df1 count(cut)
df1
## # A tibble: 5 × 2
## cut n
## <ord> <int>
## 1 Fair 1610
## 2 Good 4906
## 3 Very Good 12082
## 4 Premium 13791
## 5 Ideal 21551
We use stat="identity"
mode to generate barplot
ggplot(df1, aes(x=cut, y=n)) +
geom_bar(stat="identity")
3.2 With color
ggplot(df1, aes(x=cut, y=n)) +
geom_bar(aes(fill=cut), stat="identity")
Using fill
as grouping variable
<- diamonds %>%
df2 count(cut, clarity)
df2
## # A tibble: 40 × 3
## cut clarity n
## <ord> <ord> <int>
## 1 Fair I1 210
## 2 Fair SI2 466
## 3 Fair SI1 408
## 4 Fair VS2 261
## 5 Fair VS1 170
## 6 Fair VVS2 69
## 7 Fair VVS1 17
## 8 Fair IF 9
## 9 Good I1 96
## 10 Good SI2 1081
## # … with 30 more rows
ggplot(df2, aes(x=cut, y=n)) +
geom_bar(aes(fill=clarity), stat="identity", position="identity")